Rough Set Methods in Approximation of Hierarchical Concepts
نویسندگان
چکیده
Many learning methods ignore domain knowledge in synthesis of concept approximation. We propose to use hierarchical schemes for learning approximations of complex concepts from experimental data using inference diagrams based on domain knowledge. Our solution is based on the rough set and rough mereological approaches. The effectiveness of the proposed approach is performed and evaluated on artificial data sets generated by a traffic road simulator.
منابع مشابه
ROUGH SET OVER DUAL-UNIVERSES IN FUZZY APPROXIMATION SPACE
To tackle the problem with inexact, uncertainty and vague knowl- edge, constructive method is utilized to formulate lower and upper approx- imation sets. Rough set model over dual-universes in fuzzy approximation space is constructed. In this paper, we introduce the concept of rough set over dual-universes in fuzzy approximation space by means of cut set. Then, we discuss properties of rough se...
متن کاملMultigranulation single valued neutrosophic covering-based rough sets and their applications to multi-criteria group decision making
In this paper, three types of (philosophical, optimistic and pessimistic) multigranulation single valued neutrosophic (SVN) covering-based rough set models are presented, and these three models are applied to the problem of multi-criteria group decision making (MCGDM).Firstly, a type of SVN covering-based rough set model is proposed.Based on this rough set model, three types of mult...
متن کاملTopological structure on generalized approximation space related to n-arry relation
Classical structure of rough set theory was first formulated by Z. Pawlak in [6]. The foundation of its object classification is an equivalence binary relation and equivalence classes. The upper and lower approximation operations are two core notions in rough set theory. They can also be seenas a closure operator and an interior operator of the topology induced by an equivalence relation on a u...
متن کاملA hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts
High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...
متن کاملT-Rough Sets Based on the Lattices
The aim of this paper is to introduce and study set- valued homomorphism on lattices and T-rough lattice with respect to a sublattice. This paper deals with T-rough set approach on the lattice theory. The result of this study contributes to, T-rough fuzzy set and approximation theory and proved in several papers. Keywords: approximation space; lattice; prime ideal; rough ideal; T-rough set; set...
متن کامل